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tion conditions that maximize Q, resonators using variants of 
the deposition recipe were measured and compared. Table II 
compares the recipes and resulting measurements, showing a 
12× improvement in Q between the initial (NCD1) and final 
(MCD2) optimized recipes. Each recipe shown in the table 
minimizes residual stress via proper adjustment of the filament 
and wafer temperature during deposition, and this makes pos-
sible the non-curled folded resonator beams shown in Figure 
4. The column denoted as MCD2 indicates the best deposition 
conditions for microcrystalline polydiamond, marked by the 
highest measured Q of 146,580 and acoustic velocity of 
18,516 m/s for conductive polydiamond. 

From the table, three important strategies for raising Q can 
be inferred: 

1. Reduce the TMB:CH4 ratio, which reduces the boron 
doping level. 

2. Reduce the CH4 flow, which reduces non-diamond 
carbon formation, thereby yielding a lower loss film. 

3. Target microcrystalline polydiamond (MCD) films in-
stead of nanocrystalline diamond (NCD), since the 
former seems to be able to attain higher Q, despite its 
surface roughness. 

V. HOT FILAMENT CVD POLYDIAMOND FOR HIGH Q 

HIGH FREQUENCY MICROMECHANICAL RESONATORS 

Because they have historically achieved the highest Q’s 
among resonator designs operating past VHF, this work em-
ploys radial-contour mode disk resonators, such as shown in 
Figure 1, to evaluate the high frequency Q achievable by 
HFCVD diamond material. As shown in Figure 1 and in the 
cross section of  Figure 9-(b), this device consists of a polydi-
amond disk suspended 700 nm above a polysilicon ground 
plane and anchored to the substrate by a polysilicon stem at its 
very center. Polysilicon electrodes surround the disk with an 
electrode-to-disk gap spacing of only 80 nm. All structural and 
interconnect materials are boron-doped, so are conductive. 

The disk device operates similarly to the previous folded-
beam resonators, where a combination of a dc-bias and ac 
excitation voltages are applied across the resonator-to-input 
electrode gap to excite resonance vibration; and currents flow-
ing through the resulting time-varying dc-biased resonator-to-
output electrode capacitive gap are sensed as a measure of the 
resonance displacement against frequency. As detailed in [6], 
the resonance frequency of a radial-contour mode disk is in-
versely proportional to radius and directly proportional to 
acoustic velocity, the latter of course being one of the major 

advantages of diamond. 

The prospects of attaining Q’s at high frequencies as high 
as seen for the low frequency folded-beam devices of the pre-
vious section are mediocre, at best. Indeed, the results of the 
previous section, although very impressive, only apply to low 
frequency resonators for which anchor losses are small and the 
intrinsic material Q is set primarily by TED [14]. At the much 
higher frequencies needed for RF applications, Landau-Rumer 
regime phonon-phonon interactions supplant TED as the dom-
inant intrinsic material loss mechanism [4], and this changes 
the value of the theoretical maximum attainable Q. Perhaps 
more importantly, the higher stiffnesses needed to attain high 
frequency greatly accentuate the role of supports and anchors 
as conduits for energy loss, to the point where anchors gener-
ally dominate over other loss mechanisms when a high fre-
quency resonator is operated under vacuum. Indeed, anchor 
losses have historically prevented measurement of intrinsic 
material Q at UHF frequencies. 

Needless to say, the key to attaining a best estimate of the 
Q set by intrinsic HFCVD polydiamond material loss mecha-
nisms at high frequency is to eliminate anchor losses.  

A. Material-Mismatched Stem forMinimal Anchor Loss 

Anchor loss has long been recognized as an important Q 
limiter on the micro-scale, from the very first MEMS-based 
resonators to reach VHF frequencies with high Q [15], to 
more recent rings [3], disks [6], and lamb wave structures [16] 
operating at GHz frequencies. Indeed, VHF free-free beam 
micromechanical resonators [15] were the first to employ 
quarter-wavelength supports attached at nodal points in the 
resonator mode shape to minimize support-derived energy 
losses—a technique still very much used in the latest genera-
tion of GHz devices [3], and still among the most effective at 
reducing anchor loss. To be sure, other strategies for reducing 
support losses have also been explored, including the use of 
Bragg reflectors [17] or photonic bandgap structures [18] be-
tween the resonator and substrate, but these have so far not 
been as effective as quarter-wavelength supports attached at 
nodal locations, at least from the perspective of maximum Q. 

Ultimately, the above strategies to suppress anchor loss all 
seek to create large acoustic impedance mismatches at the 
resonator-anchor boundaries in an attempt to confine the 
acoustic energy within the resonator structure during reso-
nance vibration, thereby preventing energy loss to the sur-
roundings. Knowing this, and further recognizing the very 
large difference in characteristic acoustic impedance between 
polydiamond and other common micromachinable materials, 
the work of [6] used MPCVD polydiamond for the disk struc-
ture, but polysilicon for the stem, to effect a material mis-
match between the disk and stem that reflects energy back into 
the disk structure, preventing the energy leakage that would 
otherwise occur. The degree of reflection can be modeled and 
designed analogously to electrical transmission lines to gener-
ate a non-zero reflection coefficient for acoustic waves at the 
resonator-anchor boundary, preventing energy from flowing 
into the stem anchor towards the substrate, as depicted in Fig-
ure 8. Figure 8 specifically illustrates how a stem made in the 
same material as the disk does little to impede energy flow; 
whereas a mismatched stem made in a material different from 
that of the disk suppresses energy loss to the substrate. This 

TABLE II.   HOT FILAMENT DEPOSITED CVD DIAMOND PROPERTIES VS. 
DEPOSITION CONDITIONS 

Parameter NCD1 NCD2 MCD1 MCD2 Unit 

CH4 Concentration 2.7 1.5 1.5 1.0 % 
Dopant TMB:CH4 7500 1350 2250 675 ppm 

Wafer Temp. 720 720 710 730 °C 
Filament Temp. 2285 2200 1975 2010 °C 

Quality Factor, Q 12,171 18,246 25,580 146,580 ̶ 
Acoustic Velocity 16,767 14,442 16,886 18,516 m/s 

Resonance Freq.,  fo 41.840 36.035 210.650 232.441 kHz 
Young’s Modulus 984 730 998 1198 GPa 

Density, ρ 3500 3500 3500 3500 kg/m3
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